Modulation of cardiac ventricular excitability by GLP-1 (glucagon-like peptide-1)

Abstract

BACKGROUND. Glucagon-like peptide-1 receptor (GLP-1R) agonists improve cardiovascular outcomes in patients with type 2 diabetes mellitus. However, systemic actions of these agents cause sympathetic activation, which is generally considered to be detrimental in cardiovascular disease. Despite significant research interest in cardiovascular biology of GLP-1, the presence of GLP-1R in ventricular cardiomyocytes remains a controversial issue, and the effects of this peptide on the electrical properties of intact ventricular myocardium are unknown. We sought to determine the effects of GLP-1R agonist exendin-4 (Ex4) on ventricular action potential duration (APD) and susceptibility to ventricular arrhythmia in the rat heart in vivo and ex vivo. METHODS. Ventricular monophasic action potentials were recorded in anaesthetized (urethane) rats in vivo and isolated perfused rat hearts during sinus rhythm and ventricular pacing. RESULTS. In vivo, systemic administration of Ex4 (5 μg/kg intravenously) increased heart rate, and this effect was abolished by β-adrenoceptor blockade. Despite causing sympathetic activation, Ex4 increased APD at 90% repolarization during ventricular pacing by 7% (P=0.044; n=6) and reversed the effect of β-adrenoceptor agonist dobutamine on APD at 90% repolarization. In isolated perfused hearts, Ex4 (3 nmol/L) increased APD at 90% repolarization by 14% (P=0.015; n=6) with no effect on heart rate. Ex4 also reduced ventricular arrhythmia inducibility in conditions of β-adrenoceptor stimulation with isoproterenol. Ex4 effects on APD and ventricular arrhythmia susceptibility were prevented in conditions of muscarinic receptor blockade or inhibition of nitric oxide synthase. CONCLUSIONS. These data demonstrate that GLP-1R activation effectively opposes the effects of β-adrenoceptor stimulation on cardiac ventricular excitability and reduces ventricular arrhythmic potential. The effect of GLP-1R activation on the ventricular myocardium is indirect, mediated by acetylcholine and nitric oxide and, therefore, can be explained by stimulation of cardiac parasympathetic (vagal) neurons.

Publication
Circulation: Arrhythmia and Electrophysiology 11(e006740)

Related